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< Durability of modified carbon black
as PEMFC catalyst supports is
studied.

< Statistical structure-to-property
relationship is built by PCA.

< Surface chemistry, physical proper-
ties and microscopic structure are
analyzed.

< DIP of SEM images extracts rough-
ness, texture and shape parameters.

< Wettability is a critical parameter in
designing stable supports.
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Linking durability of carbon blacks, expressed as their oxidation resistance, used in PEMFCs as catalyst
supports, with their chemistry and morphology is an important task towards designing carbon blacks with
desired properties. Structure-to-property relationship between surface chemistry determined by X-ray
photoelectron spectroscopy (XPS), morphological structure determined by digital image processing of
scanning electron microscopy (SEM) images, physical properties, and electrochemical corrosion behavior
determined in an air-breathing gas-diffusion electrode is studied for several un-altered and several
modified carbon blacks. We are showing that surface chemistry, graphitic content and certain physical
characteristics such as BrunauereEmmetteTeller (BET) surface area and pore volume, determined by
nitrogen adsorptions are not sufficient to explain high corrosion instability of types of carbon blacks.
Inclusion of morphological characteristics, such as roughness, texture and shape parameters provide for
more inclusive description and therefore more complete structure-to-property correlations of corrosion
behavior of carbon blacks. This paper presents the first direct statistically-derived structure-to-property
relationship, developed by multivariate analysis (MVA) that links chemical and physical structural prop-
erties of the carbon blacks to their critical properties as supports for PEMFC catalysts. We have found that
balance between electrocatalytic activity and high resistance towards oxidation and corrosion is achieved
by balance between amount of graphitic content and surface oxide coverage, smaller overall roughness
and, finally, larger amount of big elongated and loose, and, hypothetically, more hydrophobic pores.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main challenges in commercializing polymer elec-
trolyte fuel cells (PEMFCs) is the need to improve their durability.
Materials aspects of durability include stability of the polymer
electrolyte membrane and its interfaces with the catalytic layers,
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corrosion resistance of the micro-porous layer and the gas-
diffusion layer/material, bi-polar plates corrosion, and durability
of gaskets and seals. One recognized key set of durability issues in
PEMFC is associated with the oxidation resistance of carbon-based
support materials. It is particularly important to note that the
dispersed carbonaceousmaterials, such as carbon blacks, employed
as support for Pt-group metal (PGM) cathode catalysts are exposed
to highly oxidative environment in PEMFC. They are inherently
susceptible to oxidation, defined as forming of surface
carboneoxygen-containing moieties (surface oxides), that can give
rise to corrosion, defined as oxidative decomposition of the
carbonaceous material and its transformation (etching) with
release of CO2. A number of key properties influencing the stability
of catalytic layers include the surface chemical composition and
morphology, accessible surface area, electrical conductivity and
pore volume, and most of these properties are associated with the
properties of the carbonaceous support itself [1].

The role of carbon blacks (CB) when used as electrocatalyst
support in PEMFC is to provide for anchoring of PGM nanoparticles
and ensuring high surface-to-volume ratio and thus, high catalyst
utilization. They also ensure electronic conductivity between the
supported electrocatalyst phase and the gas-diffusing layer, usually
used as current collector. The dispersion of CB’s also influences
mass and heat transport providing a path for even gas distribution
and access to the electrocatalyst, and for the uniform removal of gas
and liquid products from the catalytic layer. Surface chemistry (in
particular the surface oxygen content) as well as the physical
structure, the morphology, expressed through features such as
roughness and compactness of pores affects hydrophobicity of the
support and therefore the wetting properties with respect to
products and reactants, which is critical for mass-transport prop-
erties and therefore to the overall electrode long-term
functionality.

It has long been recognized that surface properties, morphology
and overall structure of carbon materials strongly affect their
tendency to the electrochemical corrosion (often named as
“oxidation resistance”). Therefore, one of the major contributing
factors to overall durability of fuel cells is the abundance of surface
and bulk structural defects in the carbon-based support material.
Corrosion currents typically increase with the specific surface area
(usually expressed as “BET surface area”) and the interlayer spacing
of graphitic planes [2]. The so-called amorphous or disordered
carbon, which is rich in defects, is the most prone to the attack
either by the gas-phase corrosive processes (such as steam etching)
or by the electrochemical oxidation. As a first step, amorphous
carbon can readily react with oxygen at ambient conditions to form
surface oxygen-containing groups.

During fuel cell operation, carbon blacks undergo both physical
and chemical changes. Anodic oxidation of carbon blacks occurs at
potentials close to those of the oxygen reduction reaction in the
presence of PGM catalysts. Since graphitic carbon is more resistant
to electrooxidation, carbon corrosion can be reduced by increasing
the graphitic content of carbon black or specific chemical modifi-
cation of carbons. The general approach to mitigation of corrosion
through surface modification is to introduce functionalizing agents
in the form of XeReY, where X is the group that reacts with the
carbon black surface, R is the linking group and Y is the functional
group at the carbonaceous materials interface. Different types of
functionalizing agents such as sulfonates, carboxylates, tertiary
amines, and steric polymers/oligomers can be used to achieve
surface modification of carbon blacks to increase their oxidation
resistance [3,4].

Analysis of chemical surface properties of carbons and their
relationship with electrochemical corrosion has been widely
studied [1,5e14]. Morphology of the support is one of the
contributing factors to catalytic efficiency and stability. Also it was
shown that in certain cases changes in morphology could shift the
rate controlling steps of the electrode reactions and, thus, affect the
overpotential. Transport behavior of gases within the support,
accessibility of reactive ions to the active sites, conductivity of the
support are among parameters affected by the morphology of the
support which have not been studied in great detail [7]. One of the
main reasons is that structural/morphological changes are not
particularly easy to correlate with degradation. For the same exact
reason, targeting morphological properties of materials towards
those resulting in the best relevant performance characteristics is
muchmore difficult task than changing chemistry bymodifications
as discussed above. It can be addressed through correlation of
morphological properties resulting from particular modification or
treatment of supports with performance characteristics.

There have been attempts for thorough structure-reactivity
studies of the electrochemical oxidation of carbon-based mate-
rials, including very essential concept-proving studies. High-
resolution transmission electron microscopy (HR-TEM), X-ray
diffraction (XRD), elemental analysis, and N2 adsorption were used
to characterize different carbon support materials.[8,9]. Pore size
distributions (PSD) extracted from microscopic images and
adsorption data demonstrated complementary results than can be
used independently to characterize porous carbons [15,16]. Direct
studies of effects of morphological properties such as roughness,
texture, pore size and shape parameters onto corrosion behavior
and linking it back to material modification are needed to fully
understand the structure-to-property correlations. Roughness as
the general shape and surface irregularity is an important charac-
teristic that affects the mass and transport behavior of the carbon
blacks [17]. Penetration of gases and ions into the pores is closely
related to pore size and pore shape distributions [18]. Compactness
or roundness of pores affects wettability, which in turn influences
transport properties of reactants within the support. The pore
connectivity, which is a result of carbon particles agglomeration,
and their subsequent shape parameters, also affects electro-
chemical properties. The relevant scale which promotes formation
of an effective double-layer or the transfer of ions into the pore
structure includes pores in the range of 5e100 nm. SEM is suitable
to access these lateral dimensions of mesoporosity and to provide
set of images representative of the morphology for statistically
valid structure-to-property correlations. We have successfully
demonstrated methodology for extracting quantitative morpho-
logical information frommicroscopic images by DIP and correlating
this information with activity and durability of Pt electrocatalysts
supported on some of the carbon blacks discussed herein [19].

Herein, we link surface chemical state (determined by XPS),
morphological properties (determined by SEM), and electro-
chemical corrosion performance (determined as corrosion currents
in an air-breathing gas-diffusion electrode) of several un-altered
and specifically modified carbon blacks by a combination of
Digital Image Processing (DIP) of SEM images and multivariate
analysis (MVA). XPS was used to determine graphitic content and
type and amount of carboneoxygen specie present within the
surfaces. The ability to discriminate between different carbon
chemical environments, not just elemental compositions, is one of
the primary advantages of XPS in the characterization of carbon-
based materials. Morphological properties such as roughness,
texture, porosity and shape of the pores were determined using DIP
of SEM images [19]. Physical macroscopic measurements include
BET surface area, pore size and pore volume. Carbon materials used
in this study possess wide range of chemical and structural char-
acteristics resulted from various chemical and temperature treat-
ments in order to unveil direct statistical relationship between the
modification, microstructure and corrosion behavior of carbon
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materials. This multi-analytical approach provides a large set of
parameters (structural, physical and microscopic properties),
which must be related to corrosion performance. Dealing with the
large number of variables (parameters), finding correlations
between them and classifying samples (in this case different types
of carbon blacks) is an important challenge that is addressed in this
work by using multivariate statistical methods of data analysis, in
particular, Principal Component Analysis (PCA) [20].
2. Experimental

2.1. Materials

As shown in Table 1, a range of samples used in this study
included commercial sample of high-surface area graphitic powder
(HSA_gr), several samples of untreated carbon blacks from Ketjen
(KB) and Vulcan XC72 families; as well as carbon blacksmodified by
various undisclosed treatments provided by Cabot Corporation
(Cabot SMP, Albuquerque, NM).
2.2. Instrumentation

To study carbon corrosion, an air-breathing gas-diffusion elec-
trode has been used. This electrode was tested in a half-cell design
consisting of a three-electrode systemwith a liquid electrolyte and
a passive, air-breathing air supply. The gas-diffusion layer was
initially formed by pressing 500 mg of hydrophobized (Teflonized)
carbon black, such as Vulcan XC-72 modified with up to 35 wt.%
Teflon, on to a nickel mesh. The nickel mesh acted as a current
collector pressed within the layer of the porous hydrophobic
matrix. The catalytic layer is created from a mixture of carbon
blacks to be studied and hydrophobized carbon blacks (the same
proportions for all types of CBs) as a binder. These are pressed on to
a nickel mesh to form a working electrode. Loadings in all these
experiments were maintained at 67.6 g cm�2. Platinumwas used as
the counter electrode with Hg/HgSO4 serving as the reference
electrode. Polarization curves of base carbon blacks and modified
carbon blacks were obtained using 2 M H2SO4 and their corrosion
currents at 0.8 V, 1 V (approximate operating conditions of a low
temperature fuel cell), 1.2 V, 1.4 V and 1.5 V for transient (current
measured 15 sec after voltage is applied) and pseudo steady-state
(current measured 30 min after voltage is applied) modes were
measured. Since electrode surface area and loading of the material
were kept the same for all samples, the comparison between
samples can be performed using values of current, as measured
in mA.

In the electrochemical evaluation of carbon blacks, ECSA of the
working electrode is calculated for all the carbons subjected to half-
cell evaluation by obtaining a cyclic voltammogram at a scan rate of
5 mV s�1 in the 0e200 mV range. A specific capacitance of 10 mF cm
is assumed for all carbon blacks for estimating ESCA.
Table 1
Carbon black sample abbreviation and description.

Sample Description, family

HSA_gr Commercial HSA Graphite
KB_24 HT-Ketjen Black
HSA_XC72 HSA-Vulcan
KB_27 HT-Ketjen Black
KB_21LO HT-Ketjen Black
HSA_XC72O HT-HSA-Vulcan
KB_24LO HT-Ketjen Black
KB_24L HT-Ketjen Black
KB_27L HT-Ketjen Black
BET surface areas were determined from nitrogen adsorption/
desorption measurements performed on a Quantochrome
Autosorb-I-MP instrument. The X-ray powder diffraction (XRD)
patternswereobtainedonaScintagdiffractometer (CuKa radiation).

XPS spectra were acquired on a Kratos Axis Ultra X-ray photo-
electron spectrometer using a monochromatic Al Ka source oper-
ating at 300 W, and charge compensation using low energy
electrons. The base pressure was about 2 � 10�10 torr, and oper-
ating pressure was around 2 � 10�9 torr. Three areas per sample
were analyzed. Survey and high-resolution spectra were acquired
at pass energies of 80 eV and 20 eV, respectively. Acquisition time
for the survey and C1s spectra were 2 min and 5 min for the O1s
spectra. Data analysis and quantification were performed using
CasaXPS software. A linear background subtraction was used for
quantification of C1s and O1s. Sensitivity factors provided by the
manufacturer were utilized. All the spectra were charge-referenced
to aromatic carbon at 284.7 eV. Carbon spectra were fitted with
a series of 70% Gaussian/30% Lorentzian line shapes, with the
exception of the graphitic component at 284.7 eV, for which
asymmetric Gaussian/Lorentzian shape was utilized. The width of
peaks in the curve-fit of C1s was set to be 1.0 eV [21].

SEM was performed on a Hitachi S-800 instrument. All images
were acquired at the same voltage and magnification settings of
2 kV and 50 K to ensure that intensity variability in images is caused
only by the variability in the morphology and not instrumental
factors. SEM images from 5 different areas on the sample were
acquired.

2.3. Data analysis

2.3.1. SEM images
Digital Image Processing of SEM images, including shape

statistics, texture analysis, roughness and gradient analysis, was
done in in-house written routine in Matlab [22] and ImageJ.

2.3.2. Multivariate analysis
Multivariate analysis of datawas done using PLS_Toolbox 5.0 for

Matlab [23]. Principal Component Analysis, using an autoscaling as
preprocessing option (mean centering and scaling to unit variance),
was the default method of data analysis.

3. Results and discussion

3.1. Electrochemical studies

For each of the carbon black samples, corrosion currents at
different voltages at two conditions (transient and steady-state)
were obtained. Table 2 summarizes conducted electrochemical
measurements, while Fig. 1 plots corrosion currents. According to
the Kinoshita-Giordano method, corrosion currents are generally
represented by it ¼ kt�n [1]. As a measure of the corrosion resis-
tance we used Kinoshita’s definition of the current at 1 V polari-
zation, potential close to operating potential of a low temperature
fuel cell, which is the largest for samples KB_24 and Vulcan
HSA_XC72. Samples KB_27, KB_24L and KB_27L are the most
resistant. The least resistant sample KB_24 has the highest ECSA
while the most resistant sample KB_24L has low ECSA. KB_27L with
its low corrosion currents at all potentials and high ECSA represents
the optimal carbon support.

Electrochemical oxidation of carbon blacks in acidic electrolyte
solution is a combination of two processes. Below 1.23 V carbon
oxidizes to CO2. Above 1.23 V corrosion due to oxygen evolution
contributes into total corrosion current. KB_24 and HSA_XC72 are
the most corrosive, while KB_24L is the most resistant samples at
all potentials. The optimal carbon support sample, KB_27L, has low



Table 2
Electrochemical parameters of the corrosion behavior of the carbon blacks

ECSA m2 Half cell corrosion current, mA transient Half cell corrosion current, mA steady-state

at 0.8 V at 1.0 V at 1.2 V at 1.4 V at 1.5 V at 0.8 V at 1.0 V at 1.2 V at 1.4 V at 1.5 V

HSA_gr 44.5 1.07 3.60 14.2 42.8 85.1 0.18 0.77 3.7 17.1 38.3
KB_24 55.9 2.71 11.63 21.8 52.7 132.1 1.10 1.93 4.2 28.0 59.1
HSA_XC72 40.9 2.80 10.00 32.8 87.1 145.7 0.39 1.41 7.5 45.6 80.5
KB_27 43.2 0.31 0.71 3.7 14.2 58.5 0.06 0.19 1.5 10.5 27.4
KB_21LO 45.8 1.21 3.27 8.6 35.1 89.0 0.28 0.71 3.3 26.0 57.9
HSA_XC72O 45.8 1.89 4.02 10.4 34.1 97.4 0.14 0.58 3.2 33.6 76.0
KB_24LO 45.1 0.87 2.11 6.6 26.8 70.7 0.13 0.49 2.8 16.4 35.4
KB_24L 39.3 0.50 1.51 4.7 19.6 62.1 0.10 0.46 2.0 14.2 33.8
KB_27L 47.8 0.48 1.46 7.0 36.8 83.8 0.07 0.40 2.4 17.4 41.1
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current at <1.2 V but pretty high currents at higher potentials due
to contribution of oxygen evolution. It is important to distinguish
electrochemical corrosion (below 1.23 V) from corrosion due to
oxygen evolution (above 1.23 V). Though large differences and
trends can be discerned from inspection of Table 2, it is hard to
evaluate more in-depth similarities and differences between
samples and the voltages responsible for them. In order to do so,
PCA was used as analysis tool as described later in the manuscript.

Presence of Pt nanoparticles on various carbon supports as used
in electrocatalysts causes increase in corrosion currents as shown in
Fig. 2 for subset of carbons and electrocatalysts analyzed by us in
our previous work [19]. Notably, there is no direct link between
corrosive behavior of carbons and electrocatalysts, i.e. some of the
less corrosive carbons result in the least corrosive electrocatalysts
such as KB27L and KB24LO, but it is not the case for all carbon
supports. This indicates that complete understanding of the
chemistry and morphology of both carbon black supports as well
electrocatalysts is critical in our ability to predict how particular
type of support will behave when Pt is deposited onto it.

3.2. Physical characterization

BET surface area (BET), pore volume (PV), pore size (PS) obtained
from N2 adsorption/desorption measurements, and d spacing
obtained from XRD data are reported in Table 3. The most corrosive
sample HSA_XC72 has the highest BET surface area and the lowest
pore size. On the other hand, the 2ndmost corrosive carbon, KB_24,
has opposite characteristics, i.e. the lowest BET area and the largest
pore size. Generally, there is correlation between BET surface area
and corrosion currents. However, KB_24 sample contradicts this
well-established dependence. We will now investigate whether
surface oxide functional groups may contribute to such high
instability of this sample.

3.3. XPS analysis

Chemical bonding and the local structure of an atom in
a compound and its electronic structure are intimately connected.
Transient, carbons
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Fig. 1. Corrosion currents obtained at transient and steady-state regimes for carbo
This is of great importance when, as with carbon, atoms may
arrange in different crystalline phases, in nanostructures, or in
amorphous networks. The most stable natural forms of carbon,
namely, graphite and diamond, correspond to 100% sp2�p and
100% sp3 hybridizations, respectively. The distribution of various
types of atomic arrangements and chemical species is typically
obtained via deconvolution of high energy resolution C 1s spectra
into multiple components: carbon atoms in graphite-like envi-
ronments, polyaromatic structures (the so-called aromatic peak),
saturated carbon species (so-called aliphatic peak) and compo-
nents for carbon atoms bonded to O and/or S atoms (e.g. CeOH,
CeO and COOH).

Fig. 2 shows a subset of XPS spectra for four CB samples.
Asymmetry of the peak indicates that multiple types of carbon
species are present. Moreover, in photoemission spectroscopy of
core levels of metals, it is accepted that the typical asymmetry
towards higher binding energy is due to electron-hole pair excita-
tions [24,25]. For graphite, when the empty density of states
gradually becomes more filled, the asymmetry of the C 1s line
shape increases due to the increased phase space for low-energy
electron-hole pairs. This low energy continuous contribution is
accounted by the asymmetric GaussianeLorentzian (GL) functions
instead of conventionally used symmetrical GL mixture compo-
nents. The width and position of asymmetric peak representing
graphitic carbon was kept tightly constrained from spectrum to
spectrum and extra GL peaks were added to complete the curve fit
of experimental spectrum [21].

Table 4 shows results of XPS C 1s spectral deconvolution along
with elemental concentration of oxygen. Small amounts of oxygen
ranging from 1.9 to 5 at% are present in all samples. Range in the
amount of graphitic carbon present within samples is quite large e

from 44% for Vulcan to 75% for Ketjen Black. All peaks above 287 eV
are summed together to represent the total amount of surface
oxides CxOy, such as C-OH, CeOC, CeO, OeCeO, etc. The amount of
surface oxides ranges from 11 to 22%. The most corrosive sample,
HSA_XC72, has large amount of surface oxides and low graphitic
content, and therefore exhibits low resistivity. On the other hand,
another most corrosive sample, KB_24 has a small amount of
ate, carbons
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Fig. 2. High resolution C1s spectra with curve fits for four representative carbon black samples.
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oxygen and high amount of graphitic carbon. In addition to physical
characteristics, chemical species detected for this sample are also
opposite fromwhat is expected for carbon blacks with high affinity
to corrosion. This demonstrates the need to investigate whether
certain morphological characteristics are potential triggers for
highly corrosive behavior of this sample.
3.4. SEM digital image processing

Representative SEM images in Fig. 3 demonstrate that with
exception of graphite HSA_gr all evaluated carbon black samples
have agglomerations of particles with some black areas due to open
pores of various dimensions. Samples HSA_gr and KB_21LO have
visible graphite planes.

One of the goals of Digital Image Processing is the conversion of
2-D images into 1-D image components that are useful for repre-
sentation and description.

Surface roughness is the first order statistical parameter which
is highly relevant for hydrophobicity and transport behavior of
carbons [17]. The average roughness (Ra) is the arithmetic mean of
the absolute values of the departure from the mean grey scale
intensity. Skewness (Rsk) of the roughness profile describes asym-
metry of the roughness, pointing to the domination of valleys
Table 3
Physical parameters

Sample name Surface area,
BET m2 g�1

Pore
vol
cc g�1

Pore
size
nm

XRD Data
d (002) fresh

HSA_gr 315.8 0.42 8.8 3.379
KB_24 234.0 1.43 24.4 3.460
HSA_XC72 885.3 1.23 5.5 3.572
KB_27 220.0 1.50 26.7 3.429
KB_21LO 410.0 1.82 17.8 3.460
HSA_XC72O 283.0 1.32 18.8 3.465
KB_24LO 355.0 1.63 18.3 3.439
KB_24L 452.0 0.79 9.0 3.443
KB_27L 454.0 2.23 19.6 3.434
(pores) or peaks in the micrograph. This parameter increases as
amount of pores (dark values of intensity within images) increases.

Texture is one of the most important features used in DIP. It
arises from the repetition of local patterns. Textural features, based
on grey scale co-occurrence matrices (GLCM), provide measures of
homogeneity, randomness or directionality [26,27]. The GLCM is
a tabulation of how often different combinations of pixel intensity
values (grey levels) occur in an image. The GLCM described here is
used for a series of “second order” statistics calculations. Second
order measures consider the relationship between groups of two
(usually neighboring) pixels in the original image.

Inverse difference moment (IDM, also called homogeneity) is
a measure of self-similarity, i.e. measure of probability that pixel of
each region have the same values. Homogeneous images contain
ideal repetitive structures, and such uniformity produces idealized
patterns. Correlation (Corr) measures linear dependency of grey
levels of neighboring pixels, with values of 0 for uncorrelated
(perfectly uniform image) and 1 for perfectly correlated pixels.
Angular secondmoment (ASM, also called uniformity) measures the
orderliness of image. Higher values of ASM will be observed for
more orderly images. Entropy (Ent) measures degree of random-
ness and is expected to be high when the values of the moving
window have similar values. It is expected to be low when the
Table 4
XPS quantification results for the surface oxygen-containing species/moieties in
atomic percent

Sample name O 1s% Carbide CeC C*eCeO CxOy

283.6 284.7 285.8 >287

HSA_gr 5.0 3.6 66.2 11.7 13.4
KB_24 2.2 3.3 70.8 12.4 11.4
HSA_XC72 4.2 5.6 44.2 29.6 16.3
KB_27 2.1 3.0 75.3 6.7 12.9
KB_21LO 4.0 2.6 56.2 16.9 20.3
HSA_XC72O 1.9 3.3 67.1 12.3 15.4
KB_24LO 2.9 2.9 66.3 11.2 16.7
KB_24L 3.2 3.0 63.0 13.5 17.4
KB_27L 5.1 2.8 52.5 17.6 21.9



Fig. 3. SEM images of the material set of carbon blacks in this study.
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values are close to either 0 or 1 (i.e. when the pixels in the local
window are uniform).

Shape parameters describe the morphology such as shape, size,
or orientation of pores in more details. There are dozens of shape
parameters in literature that rely generally on dimensionless rela-
tions of size parameters [17,28,29]. In material engineering, the
most popular is the aspect ratio (AR); the ratio between the major
and minor axes, representative of degree of elongation of circular
pores. Compactness (Comp), sometimes also called shape factor, is
a measure of the degree to which the shape is compact. More
compactly shaped pores expected to be more wettable than loose
pores, which is an important parameter in transport properties of
porous materials [30].

Table 5 summarizes all statistical parameters that were extrac-
ted from images with their abbreviations and descriptions. Table 6
shows all parameters extracted for the complete set of 9 samples.

Apart from HSA_XC72, the image parameters are quite similar
for all samples. Being the most corrosive sample, HSA_XC72 has the
smallest Ra, average skewness Rsk and largest correlation. This is the
sample that is the most different from all others. It exhibits highest
amounts of carbides and surface oxides, largest BET and highest
corrosion currents. Importantly, the 2nd most corrosive sample,
KB24, for which physical characteristics and chemical surface
species are opposite from the expected trend, has largest roughness
and skewness, indicating rough and very porous morphology.

4. Multivariate data analysis of data from individual
techniques

Major difference between samples and individual parameters
responsible for those differences are obvious fromvisual inspection
of the tables. However, it is virtually impossible to find correlations
between all 28 parameters (called variables) in this way. There
are 4 physical characteristics variables, 5 variables from XPS, 8
morphological parameters and 11 electrochemical characteristics.
Multivariate analysis methods will be used to reduce dimension-
ality of the data and assist in data interpretation.

4.1. Introduction into PCA

PCA is one of the simplest multivariate statistical analysis
methods, allowing for the identification of similarities and differ-
ences between samples, resulting in classification of samples into
groups. At its most fundamental level, PCA visualizes the difference
between samples (captured in scores) and “explains” which vari-
ables (parameters) make samples different (captured in loadings).
PCA uses Singular Value Decomposition (SVD) to decompose the
original data matrix into a set of new variables, called latent vari-
ables or loadings, which are a linear combination of the original
measurable variables. The primary components corresponding to
the largest eigenvalues represent the set of components that span
significant data, while the remaining components, each describing
a low variance, represent the noise in the data set. The results of
PCA are usually displayed as score plots (reflecting the significance
of each sample in a particular principal component), loading plots
(reflecting the significance of each variable in a particular principal
component) and biplots (showing both samples and variables for
two principal components).

First, as an example, wewill discuss interpretation of PCA results
shown in Fig. 4, applied to a simple data table combining elemental
composition (6 elements and 2 types of carbon) for 6 samples,
shown in Table 7. The loading plot (Fig. 4b) shows the contribution
of variables, while the score plot (Fig. 4c) displays the contribution
of samples into Principal Component #1 (PC1). The further vari-
ables or samples are removed from the x-axis on the loading or
score plots, the more significant they are for a given principal
component. For example, O%, Mg% and carbonates% have high
negative loadings into PC #1, while all other elements have positive
loadings. This indicates that these two groups of variables are
anticorrelated. Moreover, Cl% and Na% are located at a different



Fig. 4. PCA results from data in Table 7. Biplot (a), loading (b) and score (c) plots are shown.

Table 5
Statistical parameters extracted from SEM images terminology.

Name of parameter (abbreviation) Term Description

Mean particle shape
parameters

Aspect ratio (AR) Ratio of the objects height to its width Minimum of 1 for a circle
Compactness (Comp) Shape factor: 4pi � area (perimeter) Numerical quantity representing the

degree to which a shape is compact
Texture parameters
Angular second

moment (ASM)
Measure of uniformity
(average certainty in grey tone co-occurrence)

Homogeneous images contain ideal
repetitive structures, and such uniformity
produces idealized patterns.

Correlation (Corr) Linear dependency of grey levels of
neighboring pixels

Low for perfectly uniform images,
1 for perfectly correlated pixels.

Inverse difference
moment (IDM)

Measure of homogeneity,
Opposite from contrast

Homogeneous images contain ideal repetitive
structures, and such uniformity produces idealized patterns

Entropy (Ent) Average uncertainty of grey tone co-occurrence,
degree of randomness

High when the values of the local window
have similar values. It is low when the values
are close to either 0 or 1

Roughness parameters
Ra (Ra) Arithmetical mean deviation Arithmetic average of the roughness profile
Rsk (Rsk) Skewness of the assessed profile Asymmetry of the roughness profile
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distance from the zero axis than C%, N% and CeN%, reflecting the
different significance of these two groups of variables into PC1. The
score plot shows that samples 3 and 4 are anticorrelated with
samples 1 and 2. Samples 5 and 6 are located very close to the x-
axis, indicating that they have low contribution to this PC. By
interpreting the loadings and scores plots side by side, one may
conclude that samples 3 and 4 have a high contribution of O, Mg
and carbonates (negative loadings and scores), while the rest of the
samples have high contributions from the rest of the elements
(positive loadings and scores). Values in original data table confirm
these observations.

Biplots, as shown in Fig. 4a, combine the information from the
scores and loadings plots. The further variables and samples from
Table 6
Statistical parameters extracted from SEM images.

HSA_gr KB_24 HSA_XC72 KB_27 K

ASM 6.0E-04 6.5E-04 2.0E-04 6.0E-04 4
Corr 3.7E-04 6.3E-04 8.2E-04 8.0E-04 4
IDM 0.26 0.31 0.09 0.29 0
Ent 8.16 7.81 8.96 7.80 8
Comp 0.82 0.79 0.78 0.81 0
AR 1.67 1.80 1.82 1.71 1
Ra 41.6 41.9 26.0 29.0 3
Rsk 1.11 0.77 0.43 0.36 0
the intersection of axes, the more significant they are in describing
the variability within the original data. Biplots provide a more
instructive visualization of the clustering of samples for identifi-
cation of variables that are the most or least important for a specific
sample grouping. Correlated variables and samples will be located
in the same regions of a biplot. PC1 captures 63% of variance within
the data and shows the highest positive contributions from samples
1 and 2 and associated variables C%, N% and CeN%. The highest
negative contributions come from samples 3 and 4 and associated
Mg%, O%, and carbonates%. Samples 5 and 6 are close to zero on the
x-axis as they have small contributions to PC1. It means that both
groups of variables with high positive and high negative contri-
bution into PC1, equally contribute into the composition of samples
B_21LO HSA_XC72O KB_24LO KB_24L KB_27L

.6E-04 8.9E-04 7.5E-04 5.0E-04 6.1E-04

.3E-04 5.2E-04 4.3E-04 5.4E-04 7.3E-04

.29 0.37 0.39 0.28 0.31

.18 7.63 7.78 8.06 7.80

.84 0.83 0.82 0.80 0.82

.57 1.63 1.64 1.72 1.69
6.4 35.1 37.2 35.2 29.6
.06 0.82 0.43 0.49 0.03



Table 7
Elemental quantification of 6 samples using XPS.

Sample O 1s Mg 2p Na 1s Cl 2p C 1s N 1s C 286.5 eV C 290 eV

1 32.7 4.5 8.0 4.1 42.5 3.3 37.8 15.4
2 33.5 5.9 2.0 1.3 46.5 4.9 29.7 15.9
3 48.8 10.1 4.5 2 23.4 0.8 13.5 52.1
4 54.6 7.4 2.2 1.9 26.4 0.4 9.1 49.2
5 37.2 7.3 13.3 8.6 24.8 1.4 14.5 31.3
6 33.6 7.9 12.6 6.5 31.4 1.5 21.0 25.0
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5 and 6. In other words, amounts of C, N, Mg, O, CeN, and
carbonates for samples 5 and 6 are close to the average amounts of
these species for all samples. These samples, however, have the
highest positive contribution into PC2, which captures 23% of
variance in the data, due to higher than average amounts of Na%
and Cl%. As a result, three distinct groups of samples are repre-
sented on the biplot for the example shown in Fig. 4. Samples 1 and
2 have a high contribution from an organic phase, which includes C,
N, and CeN species; samples 5 and 6 are enriched in salt (Na and Cl)
and samples 3 and 4 are enriched in ametal carbonate phase (O, Mg
and carbonates). The function of PCA in this type of analysis is to
find samples which are globally correlated or anti-correlated, and
to facilitate visualization of the variables responsible for the
correlations. Such use of biplot will be applied herein to simplify
association of variables from multiple techniques for various
samples.
4.2. Classification of samples based on corrosion current

Fig. 5 shows PCA results applied to corrosion currents in tran-
sient and steady-state conditions. PC1 separates samples based on
the corrosion currents. All variable based on current measurements
contribute positively into PC1, which captures w83% of variance
within the data. Samples that have high positive loadings, such as
XC_72 and KB_24, are highly corrosive, while samples which have
negative loading into PC1 (i.e. KB_27, KB24L, etc) are the least
corrosive. PC2 captures w11% of variance in the data and separates
Fig. 5. PCA results from corrosion data in Table 2. PC1 separates samples
samples based on electrochemical corrosion (currents up to 1.3 V)
and corrosion due to evolution of oxygen (above 1.3 V). Corrosion
properties of the most corrosive samples XC_72 and KB_24 are
quite different. KB24 has higher currents due to electrochemical
corrosion (at potentials upto 1.23 V), while XC_72 has higher
currents due to contribution of corrosion from oxygen evolution (at
potentials higher than 1.23 V).
4.3. Classification of samples based on surface chemistry

Fig. 6 shows PCA results applied to Table 4. PC1 captures w63%
of variance in data and reflects domination of surface oxides
(positive loadings) versus graphitic carbon (negative loadings).
Vulcan XC72 is the most different CB from all others, having the
highest positive loading into PC1, as it has highest amounts of
oxygen, surface oxides and carbides. This sample was among the
two most corrosive separated by PCA applied to corrosion currents
(Fig. 5) largely due to evolution of oxygen. Ketjen black modified
samples, KB_21LO and KB_27L, also have high amounts of oxygen
and surface oxides, but they show high corrosion resistance.
Samples on the left part of biplot, having negative loadings in PC1,
have high contribution of graphitic carbon. Samples in between
that are close to zero x-axis (HSA_gr and KB_24L), have equal
contribution from graphitic carbon and surface oxides. Sample
KB24, which is also among most corrosive ones at lower potentials
(electrochemical corrosion), falls into the group with other not
corrosive samples having large amounts of graphitic carbon and
low amounts of surface oxides. Side by side comparison of Figs. 5
and 6 clearly visualizes that chemical surface composition is not
major stand-alone factor that determines durability of carbon
blacks.
5. Structure-to-property relationship

For direct structure-to-property correlations, data from all
characterization methods were combined into one dataset and PCA
was applied.
by more/less corrosive. PC2 separates samples by type of corrosion.
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First, we analyze correlation between physical, compositional
and electrochemical parameters discussed above, as these rela-
tionships are of most interest during designing optimal carbon
support. Fig. 7 shows PCA biplot for this set of parameters.

High corrosion currents do correlate with large BET area, large
d spacing, presence of large amount of oxygen and low amount of
graphitic carbons, which conforms with conventional under-
standing of characteristics causing low durability. Large pore size
and pore volume is typical for samples with higher amount of
graphitic carbon resulting in lower corrosion currents. Importantly,
however, the 2nd most corrosive sample KB24 stands away on the
biplot from parameters identified as highly significant for insta-
bility. Corrosion behavior of this sample is, thus, different from that
of XC72 sample and cannot be explained by surface chemistry and
physical characteristics alone. Therefore, influence of morpholog-
ical parameters which play crucial role in corrosion kinetics is
studied next.

All data available were combined into one data table and
PCA was applied (Fig. 8). Similar to results from corrosion data
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Fig. 7. PCA results to table combining physical, XPS and corrosion currents for all
samples.
themselves (Fig. 5), positive loadings of all values of current into
PC1 indicate samples which are high in corrosion, i.e. (XC72 and
KB24), and negative values of loading show samples which are low
in corrosion. Skewness Rsk which is indicator of number of pores
and large AR have high contribution to sample KB24, while large
BET, entropy, correlation and ASM have high significance for XC_72.
More heterogeneous morphology with lots of elongated pores
results in higher electrochemical corrosion currents at lower volt-
ages, while more uniform random morphology with smaller
roughness but larger BET surface area results in corrosion currents
at higher voltages due to evolution of oxygen. More homogeneous
and uniform morphologies with large overall roughness and large
pores and pore volume result in better corrosion resistance.

With XC_72 being so different from all the other samples in
having highest currents due to evolution of oxygen, it was also
important to study structure-to-property correlations with this
sample excluded from the model to highlight the effect of elec-
trochemical corrosion. Results of PCA applied to the rest of samples
are shown in Fig. 9.

Samples XC72O, HSAgr and KB24 are the most corrosive and
have highest ECSA, overall roughness Ra, skewness Rsk, d-spacing
and aspect ratio AR. Samples KB27L and KB21LO are also somewhat
Fig. 9. PCA results to table combining all data, sample XC-72 is excluded.



Fig. 10. Structure-to-property relationship for carbon black samples with optimal and low corrosion resistance.
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corrosive, as captured by PC 2, and they have the highest amount of
surface oxides, which correlates with large BET and Pore Volume,
entropy and compactness.

Samples KB24L, KB24LO and KB27 contributing negatively into
both PCs are the least corrosive but also potentially least active
based on ECSA. The subquadrant on PC biplot containing samples
with positive loading into PC1 and negative loading into PC2 is
where the samples with optimal properties would be located.
Moderate ECSA andmoderate corrosion stability wouldmake them
ideal. None of the pristine and modified samples studied herein fall
into this category. Such ideal samples should have the highest
amounts of graphitic carbon, largest pore size PS and Rsk, which is
representative of the amount of pores, and larger aspect ratio AR
and smallest compactness.

Structure-to-property correlation analysis indicates that carbon
black samples with large BET, heterogeneous (Ra), randomly
oriented (Entr), compact (Comp) smaller pores (PS) and large
amount of surface oxides (CxOy, O%) content result in high corrosive
behavior. All of these parameters represent supports with high
wettability of pores, which may be the parameter that needs to be
investigated in more details when designing carbon-based
supports for Pt-based electrocatalysts. Carbon blacks possessing
more homogeneous morphology with large amount (Rsk) of elon-
gated pores (AR) and not as high roughness (Ra), large pore size (PS)
and high graphitic carbon (Cgr) content are less corrosive and at the
same time potentially more electrochemically active. Fig. 10
summarizes the vision behind discovered relationship between
chemical structure, morphology and electrochemical properties of
carbon blacks.

6. Conclusions

A multi-analytical approach combining surface analysis using
XPS, microscopic analysis using SEM imaging, physical macroscopic
characterization and electrochemical evaluation of carbon blacks
was performed to provide comprehensive understanding of carbon
black structure andmorphology. Digital Image Processing (DIP) was
applied to SEM images to extract texture, shape, and roughness
statistics. PCA was used as the main visualization tool to elucidate
statistical correlations among various properties.

Samples with the highest potential activity for oxygen reduction
reaction and highest corrosion were found to have high surface
area, high roughness and large amounts of surface oxides. Samples
with moderate activity and high resistance towards corrosion have
large amounts of graphitic carbons and large amount of large not
very compact elongated pores. All of these parameters represent
supports with high hydrophobicity, which may be the parameter
that needs to be investigated in more details when designing
carbon-based supports for Pt-based electrocatalysts. Identification
of properties of the sample that matches optimal surface chemical
and morphological composition can serve as guidance in type of
modifications that must be performed.
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